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About Us

Exploratory Systems Lab at UC Davis

Goal: High-performance resilient data processing.

I 1 Professor, 1 Postdoc, 3 Ph.D. students, 6 M.Sc. and B.Sc. students.

I Recent papers at VLDB, ICDCS, ICDT, DISC, EDBT, and more.

I Intersection of blockchain and database technology.

I ResilientDB: A pioneering new data platform.
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Goal: High-performance resilient data processing

�estions

1. Why?

2. What is the relation with blockchains?

3. What do we already have?

4. Where can we improve?

5. What new tools do we need?
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Towards high-performance resilient data processing:

Why?
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Why resilient data processing?

Go beyond assumptions of traditional transaction processing!

Crash recovery Crash resilience Byzantine resilience

2PC

3PC

Paxos

Consensus

Resilience −→

C
o

m
p

l
e
x
i
t
y
−→

Example

I Provide continuous services during failures.

I Provide services in federated environments.
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Why high-performance?

Support requirements of future applications!

I Ever-growing volumes of data (e.g., sensor networks).

I Ever-growing demands of applications (e.g., machine learning).
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Towards high-performance resilient data processing:

What is the relation with blockchains?
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What is a blockchain?

Bitcoin: Management of monetary tokens (Bitcoins)

I Open and decentralized transfer of tokens (transactions).

I History of transactions (ledger) stored in the blockchain.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Block B1 Block B2 Block B3 Block B4

I Many participants hold a copy of the blockchain.

I Blockchain structure is tamper-proof by design.
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What is a blockchain? - Malicious behavior

Bitcoin: Preventing malicious behavior

I Malicious a�empts to change a chain.
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T301, . . . , T400

v

Block B1 Block B2 Block B3 Block B4

hash1 puzzle
′
2

. . . , T ′, . . .

Block B
′
2

I Longest chain has highest incentives.

I Making blocks (solving puzzles) is very costly.

I Malicious a�empt leads to a dead end .
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What is a blockchain? - A definition

A resilient tamper-proof ledger maintained by many participants.

I Ledger .

Append-only sequence of transactions.

In database terms: a journal or log.

I Resilient .

High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

Blockchains are distributed fully-replicated systems!
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Components of blockchain systems

1. Replicas.

2. Holding the ledger of transactions.

3. Clients with new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

Client

T
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Bitcoin: A permissionless blockchain

The participants are not known and can change.

Rationale: Fully decentralized and open cryptocurrencies

I Bitcoin, Ethereum, . . . .

I Scale to thousands of participants.

I Low transaction processing throughput.

I Very high transaction latencies.



13/60

We focus on permissioned blockchains

All participants are known.

Rationale: Data processing in managed environment

I Support di�erent a�ack models than cryptocurrencies.

I Easier to support low latencies and high throughputs.

I Downside: changing participants is hard.

Many ideas also apply to permissionless blockchains.
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Towards high-performance resilient data processing:

What do we already have?
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We have consensus: Pbft, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

r4

r3

r2

r1

c T

Consensus

T

T

T

T

o
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Operating a fully-replicated ledger using consensus

Each replica maintains a copy of the ledger:

Append-only sequence of transactions.

1. Use consensus to select the d-th client request T .

2. Append T as the d-th entry to the ledger.

3. Execute T as the d-th entry, inform client.

r1 r2

r3 r4

Cluster

Requests

Consistent state: Linearizable order and deterministic execution

On identical inputs, execution of transactions at all non-faulty replicas

must produce identical outputs.
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Variations on consensus: Byzantine Broadcast (Generals)

Assume a replica g is the general and holds transaction T .

A Byzantine broadcast algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Dependence If the general g is non-faulty,

then non-faulty replicas will decide on T .

r3

r2

r1

g T

Broadcast

T
′

T
′

T
′

T
′

(T
′ = T if the general g is non-faulty).
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Variations on consensus: Interactive consistency

Assume n replicas and each replica ri holds a transaction Ti .

An interactive consistency algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on n transactions.

Non-divergence Non-faulty replicas decide on the same transactions.

Dependence If replica rj is non-faulty,

then non-faulty replicas will decide on Tj .

r4

r3

r2

r1

T4

T3

T2

T1

Interactive

consistency

[T1, T2,é, T4]
[T1, T2,é, T4]
[T1, T2,é, T4]
[T1, T2,é, T4]

(As r3 is faulty: é can be anything)
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Distributed fully-replicated systems: The CAP Theorem

Consistency Does every participant have exactly the same data?

Availability Does the system continuously provide services?

Partitioning Can the system cope with network disturbances?

Theorem (The CAP Theorem)

Can provide at most two-out-of-three of these properties.

CAP Theorem uses narrow definitions!
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The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissionless Blockchains

Open membership focuses on Availability and Partitioning.

=⇒ Consistency not guaranteed (e.g., forks).
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The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissioned Blockchains

Consistency at all costs.

=⇒ Availability when communication is reliable.

=⇒ Some network failure when replicas are reliable.
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What else do we have?

I A lot of theory on consensus: consensus is costly.

I Pbft: A practical Byzantine fault-tolerant consensus protocol.

I Tamper-proof ledgers.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Exact details: depend on consensus, application, a�ack model, . . .

I Many cryptographic tools.

What about high-performance?
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Theory on consensus: Summary

Limitations of practical consensus

I No asynchronous communication!

I Dealing with f malicious failures requires n > 3f replicas.

I Worst-case: at least Ω (f + 1) phases of communication.

I Worst-case: at least Ω (nf) signatures and Ω
(
n + f2

)
messages.

I Network must stay connected when removing 2f replicas.

Consensus in practice

Asynchronous communication, n > 3f, clique network:

=⇒ termination only when communication is reliable.
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Towards high-performance resilient data processing:

What do we already have?

Pbft
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Pbft: Practical Byzantine Fault Tolerance

Primary Coordinates consensus: propose transactions to replicate.

Backup Accept transactions and verifies behavior of primary.

g 2 2 2 . . . 2
Client Primary Replica Replica Replica

Request T

Propose T

Result of T

Replication and verification
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Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

〈T 〉c.
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Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare

Prepare Commit Inform

PrePrepare(〈T 〉c, v, d).
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Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare

Commit Inform

If receive PrePrepare message m: Prepare(m).
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Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare Commit

Inform

If n − f identical Prepare(m) messages: Commit(m).
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Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

If n − f identical Commit(m) messages: execute, Inform(〈T 〉c, d, r).
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Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,

then the normal-case of Pbft ensures consensus on T in round d .

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

r3

r2

r1

p

c1

c2

PrePrepare Prepare Commit Inform
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Theorem

If the primary is non-faulty and communication is reliable,

then the normal-case of Pbft ensures consensus on T in round d .

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

r3

r2

r1

p

c1

c2

What to do?

PrePrepare Prepare Commit Inform
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Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f. �
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Pbft: Primary failure versus malicious replicas

Primary p is faulty

ignores r3

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

Replica r3 is malicious

pretends to be ignored

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform
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Pbft: Detectable primary failures

If the primary behaves faulty to > f non-faulty replicas,

then failure of the primary is detectable.

Replacing the primary: View-change at replica r

1. r detects failure of the current primary p.

2. r chooses a new primary p
′

(the next replica).

3. r provides p
′

with its current state.

4. p
′

proposes a new view .

5. If the new view is valid, then r switches to this view.
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Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange

ViewChange NewView Validate and move to view v + 1

Send ViewChange(E, v) with E all prepared transactions.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.
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Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange ViewChange

NewView Validate and move to view v + 1

Indirect failure detection by r2.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.
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Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange ViewChange NewView

Validate and move to view v + 1

If n − f valid ViewChange(E, v) messages: NewView(v + 1, E,N).

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.
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Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange ViewChange NewView Validate and move to view v + 1

Move to view v + 1 if NewView(v + 1, E,N) is valid.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.
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Pbft: A property of view-changes when n > 3f

Theorem (Castro et al.)

Let NewView(v ′, E,N) be a well-formed NewView message.

If a set S of n − 2f non-faulty replicas commi�ed to m in view v < v
′
,

then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v ′ − 1)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f), a contradiction! �
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Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of non-faulty primaries.

Worst-case: replacements until communication becomes reliable.
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2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of non-faulty primaries.

Worst-case: replacements until communication becomes reliable.
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Pbft: Modeling real-world performance
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Towards high-performance resilient data processing:

Where can we improve?
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A look at high-performance data processing

Scalability: adding resources =⇒ adding performance.

Full replication: adding resources (replicas) =⇒ less performance!
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Sharding and Geo-scale aware sharding

System

(All Data)

Requests

(All Data)

=⇒

Shard

(European Data)

Shard

(American Data)

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

Adding shards =⇒ adding throughput (parallel processing), adding storage.
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Role Specialization: Read-only workloads

System

(All Data)

Requests

(Reads, Updates)

=⇒

Storage System

(All Data)

Requests

(Updates)

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Visualization

(u
pdate

s)

Specializing roles =⇒ adding throughput (parallel processing, specialized hardware, . . . ).
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Towards high-performance resilient data processing:

What new tools do we need?
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Central ideas for improvement

Reminder

We can make a resilient cluster that manages data: blockchains.

I Sharding: make each shard an independent blockchain.

Requires: reliable communication between blockchains.

Permissionless blockchains: relays, atomic swaps!

I Role Specialization: make the storage system a blockchain.

Requires: reliable read-only updates of the blockchain.

Permissionless blockchains: light clients!

Consensus is of no use here if we want e�iciency.
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Towards high-performance resilient data processing:

What new tools do we need?

Sharding
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Sharding: Reliable communication between blockchains

r1 r2

r3 r4

Cluster

(All Data)

Requests

(All Data)

=⇒

e1 e2

e3 e4

Cluster

(European Data)

a1 a2

a3 a4

Cluster

(American Data)

Cluster-Sending

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

The Byzantine cluster-sending problem.
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The Byzantine cluster-sending problem

The problem of sending a value v from a cluster C1 to a cluster C2 such that

I all non-faulty replicas in C2 receive the value v ;

I all non-faulty replicas in C1 confirm that the value v was received; and

I C2 only receives a value v if all non-faulty replicas in C1 agree upon sending v .

Requirements to provide reliable communication between clusters with Byzantine replicas.
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Global communication versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1) (f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)

OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977
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Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.
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Lower bounds for cluster-sending: Results

Theorem (Cluster-sending lower bound, simplified)

We need to exchange max(n1,n2) messages to do cluster-sending.

Theorem (Cluster-sending lower bound, crash failures)

Assume n1 ≥ n2 and let

q = (f1 + 1) div nf2; r = (f1 + 1)modnf2.

We need to exchange at least qn2 + r + f2 sgn r ≈ n1 messages to do cluster-sending.
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An optimal cluster-sending algorithm (crash failures)

Protocol for the sending cluster C1, n1 ≥ n2, n1 ≥ f :
1: Agree on sending v to C2.

2: Choose replicas P ⊆ C1 with |P | = f .

3: Choose a n2-partition partition(P) of P.

4: for P ∈ partition(P) do
5: Choose replicas Q ⊆ C2 with |Q | = |P |.
6: Choose a bijection b : P → Q.

7: for r1 ∈ P do
8: Send v from r1 to b(r1).

Protocol for the receiving cluster C2:
9: event r2 ∈ C2 receives w from a replica in C1 do

10: Broadcast w to all replicas in C2.

11: event r2 ∈ C2 receives w from a replica in C2 do
12: r2 considers w received.
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An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, f = 6
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An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, f = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2 Received v



48/60

Cluster-sending: Can we do be�er

Pessimistic

No: these protocols are worst-case optimal.

Cannot do be�er than linear communication in the size of the clusters.

Optimistic—upcoming results

Yes: if we randomly choose sender and receiver, then we o�en do much be�er!

Probabilistic approach: expected-case only constant communication (four steps).
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Towards high-performance resilient data processing:

What new tools do we need?

Role Specialization
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Role Specialization: Reliable read-only updates of the blockchain

System

(All Data)
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r1 r2
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The Byzantine learner problem.
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The Byzantine learner problem

The problem of sending a ledger L maintained by a cluster C to a learner l such that:

I the learner l will eventually receive all transactions in L; and

I the learner l will only receive transactions in L.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in C.
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Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ‖v ‖.
An information dispersal algorithm can encode v in n pieces v

′

such that v can be decoded from every set of n − f such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:

I Each piece v
′

has size

⌈
‖v ‖
n−f

⌉
.

I The n − f pieces necessary for decoding have a total size of (n − f)
⌈
‖v ‖
(n−f)

⌉
≈ ‖v ‖.
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The delayed-replication algorithm

Idea: C sends a ledger L to learner l

1. Partition the ledger L in sequences S of n transactions.

2. Replica ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica ri ∈ C sends Si with a checksum Ci (S) of S to learner l.

4. Learner l receives at least n − f distinct and valid pieces and decodes S.

Observation (n > 2f)
I Replica ri sends at most B =

⌈
‖S ‖
n−f

⌉
+ c ≤ 2‖S ‖

n + 1 + c = O
(
‖S ‖
n + c

)
bytes.

I Learner l receives at most n · B = O (‖S‖ + cn) bytes.
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Communication by the delayed-replication algorithm

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12

Update decision in ledger L −→

No dispersal First 4 updates Second 4 updates

Learned

L[0 : 4]
Learned

L[4 : 8]
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Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.
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Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).
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Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].
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Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

If one knows the root: validity of individual pieces can be determined.
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Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner l, replica r ∈ C, and ledger L.

The delayed-replication algorithm with tree checksums guarantees

1. l will learn L;

2. l will receive at most |L| messages with a total size of O (‖L‖ + |L| log n);
3. l will only need at most |L|/n decode steps;

4. r will sent at most |L|/n messages to l of size O
(
‖L ‖+|L | log n

n

)
.

Adding replicas to cluster C =⇒ less communication per replica!
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Application: Scalable storage for resilient systems

I Clusters typically need a view V on the data to decide whether updates are valid.

I Clusters only need the full ledger L for recovery .

I We can use delayed-replication to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

O (‖L‖ + ‖V‖) to O
(
‖L‖
n − f +

|L|
n

log(n) + ‖V‖
)
.
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Towards high-performance resilient data processing:

Concluding remarks



59/60

Conclusion

We need an extensive toolbox!

(permissioned) (permissionless)

I Consensus PBFT, Paxos, . . . PoW, PoS, . . .

I Cross-blockchain communication Cluster-sending Relays, atomic swaps

I Read-only participation Byzantine learning Light clients

High-performance resilient data processing is nearby.
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Ongoing work

Initial results are available

I Cluster-sending: DISC 2019, doi: 10.4230/LIPIcs.DISC.2019.45.

I Byzantine learning: ICDT 2020, doi: 10.4230/LIPIcs.ICDT.2020.17.

I Geo-aware consensus: VLDB 2020, doi: 10.14778/3380750.3380757.

More about us and our work

I Jelle Hellings https://jhellings.nl/.

I
Creativity Unfolded

ExpoLab https://expolab.org/.

I ResilientDB
Security, Privacy Reloaded

https://resilientdb.com/.

https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.ICDT.2020.17
https://doi.org/10.14778/3380750.3380757
https://jhellings.nl/
https://expolab.org/
https://resilientdb.com/
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