
1/60

Building High Throughput Permissioned Blockchain Fabrics:

Challenges and Opportunities

Suyash Gupta Jelle Hellings Sajjad Rahnama Mohammad Sadoghi

Creativity Unfolded
ExpoLab ResilientDB

Security, Privacy Reloaded



2/60

About Us

Exploratory Systems Lab at UC Davis

Goal: High-performance resilient data processing.

I 1 Professor, 1 Postdoc, 3 Ph.D. students, 6 M.Sc. and B.Sc. students.

I Recent papers at VLDB, ICDCS, ICDT, DISC, EDBT, and more.

I Intersection of blockchain and database technology.

I ResilientDB: A pioneering new data platform.



3/60

Goal: High-performance resilient data processing

�estions

1. Why?

2. What is the relation with blockchains?

3. What do we already have?

4. Where can we improve?

5. What new tools do we need?



4/60

Towards high-performance resilient data processing:

Why?



5/60

Why resilient data processing?

Go beyond assumptions of traditional transaction processing!

Crash recovery Crash resilience Byzantine resilience

2PC

3PC

Paxos

Consensus

Resilience −→

C
o

m
p

l
e
x
i
t
y
−→

Example

I Provide continuous services during failures.

I Provide services in federated environments.



6/60

Why high-performance?

Support requirements of future applications!

I Ever-growing volumes of data (e.g., sensor networks).

I Ever-growing demands of applications (e.g., machine learning).



7/60

Towards high-performance resilient data processing:

What is the relation with blockchains?



8/60

What is a blockchain?

Bitcoin: Management of monetary tokens (Bitcoins)

I Open and decentralized transfer of tokens (transactions).

I History of transactions (ledger) stored in the blockchain.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Block B1 Block B2 Block B3 Block B4

I Many participants hold a copy of the blockchain.

I Blockchain structure is tamper-proof by design.



8/60

What is a blockchain?

Bitcoin: Management of monetary tokens (Bitcoins)

I Open and decentralized transfer of tokens (transactions).

I History of transactions (ledger) stored in the blockchain.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Block B1 Block B2 Block B3 Block B4

I Many participants hold a copy of the blockchain.

I Blockchain structure is tamper-proof by design.



9/60

What is a blockchain? - Malicious behavior

Bitcoin: Preventing malicious behavior

I Malicious a�empts to change a chain.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Block B1 Block B2 Block B3 Block B4

hash1 puzzle
′
2

. . . , T ′, . . .

Block B
′
2

I Longest chain has highest incentives.

I Making blocks (solving puzzles) is very costly.

I Malicious a�empt leads to a dead end .



9/60

What is a blockchain? - Malicious behavior

Bitcoin: Preventing malicious behavior

I Malicious a�empts to change a chain.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Block B1 Block B2 Block B3 Block B4

hash1 puzzle
′
2

. . . , T ′, . . .

Block B
′
2

I Longest chain has highest incentives.

I Making blocks (solving puzzles) is very costly.

I Malicious a�empt leads to a dead end .



10/60

What is a blockchain? - A definition

A resilient tamper-proof ledger maintained by many participants.

I Ledger .

Append-only sequence of transactions.

In database terms: a journal or log.

I Resilient .

High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

Blockchains are distributed fully-replicated systems!



11/60

Components of blockchain systems

1. Replicas.

2. Holding the ledger of transactions.

3. Clients with new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

Client

T



11/60

Components of blockchain systems

1. Replicas.

2. Holding the ledger of transactions.

3. Clients with new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

[T1, T2, ...]

Client

T



11/60

Components of blockchain systems

1. Replicas.

2. Holding the ledger of transactions.

3. Clients with new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

[T1, T2, ...]

Client

T



11/60

Components of blockchain systems

1. Replicas.

2. Holding the ledger of transactions.

3. Clients with new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

[T1, T2, ...]

Client

T



11/60

Components of blockchain systems

1. Replicas.

2. Holding the ledger of transactions.

3. Clients with new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

Client

T

[T1, T2, ..., T ]



11/60

Components of blockchain systems

1. Replicas.

2. Holding the ledger of transactions.

3. Clients with new transactions.

4. Transaction agreement via consensus.

5. Append-only updates to ledger.

6. Cryptography.

r1 r2

r3 r4

Client

T

[T1, T2, ..., T ]



12/60

Bitcoin: A permissionless blockchain

The participants are not known and can change.

Rationale: Fully decentralized and open cryptocurrencies

I Bitcoin, Ethereum, . . . .

I Scale to thousands of participants.

I Low transaction processing throughput.

I Very high transaction latencies.



13/60

We focus on permissioned blockchains

All participants are known.

Rationale: Data processing in managed environment

I Support di�erent a�ack models than cryptocurrencies.

I Easier to support low latencies and high throughputs.

I Downside: changing participants is hard.

Many ideas also apply to permissionless blockchains.



14/60

Towards high-performance resilient data processing:

What do we already have?



15/60

We have consensus: Pbft, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

r4

r3

r2

r1

c T

Consensus

T

T

T

T

o



15/60

We have consensus: Pbft, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

r4

r3

r2

r1

c T

Consensus

T

T

T

T

o



15/60

We have consensus: Pbft, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

r4

r3

r2

r1

c T

Consensus

T

T

T

T

o



16/60

Operating a fully-replicated ledger using consensus

Each replica maintains a copy of the ledger:

Append-only sequence of transactions.

1. Use consensus to select the d-th client request T .

2. Append T as the d-th entry to the ledger.

3. Execute T as the d-th entry, inform client.

r1 r2

r3 r4

Cluster

Requests

Consistent state: Linearizable order and deterministic execution

On identical inputs, execution of transactions at all non-faulty replicas

must produce identical outputs.



17/60

Variations on consensus: Byzantine Broadcast (Generals)

Assume a replica g is the general and holds transaction T .

A Byzantine broadcast algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Dependence If the general g is non-faulty,

then non-faulty replicas will decide on T .

r3

r2

r1

g T

Broadcast

T
′

T
′

T
′

T
′

(T
′ = T if the general g is non-faulty).



18/60

Variations on consensus: Interactive consistency

Assume n replicas and each replica ri holds a transaction Ti .

An interactive consistency algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on n transactions.

Non-divergence Non-faulty replicas decide on the same transactions.

Dependence If replica rj is non-faulty,

then non-faulty replicas will decide on Tj .

r4

r3

r2

r1

T4

T3

T2

T1

Interactive

consistency

[T1, T2,é, T4]
[T1, T2,é, T4]
[T1, T2,é, T4]
[T1, T2,é, T4]

(As r3 is faulty: é can be anything)



19/60

Distributed fully-replicated systems: The CAP Theorem

Consistency Does every participant have exactly the same data?

Availability Does the system continuously provide services?

Partitioning Can the system cope with network disturbances?

Theorem (The CAP Theorem)

Can provide at most two-out-of-three of these properties.

CAP Theorem uses narrow definitions!



19/60

Distributed fully-replicated systems: The CAP Theorem

Consistency Does every participant have exactly the same data?

Availability Does the system continuously provide services?

Partitioning Can the system cope with network disturbances?

Theorem (The CAP Theorem)

Can provide at most two-out-of-three of these properties.

CAP Theorem uses narrow definitions!



20/60

The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissionless Blockchains

Open membership focuses on Availability and Partitioning.

=⇒ Consistency not guaranteed (e.g., forks).



20/60

The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissioned Blockchains

Consistency at all costs.

=⇒ Availability when communication is reliable.

=⇒ Some network failure when replicas are reliable.



21/60

What else do we have?

I A lot of theory on consensus: consensus is costly.

I Pbft: A practical Byzantine fault-tolerant consensus protocol.

I Tamper-proof ledgers.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Exact details: depend on consensus, application, a�ack model, . . .

I Many cryptographic tools.

What about high-performance?



21/60

What else do we have?

I A lot of theory on consensus: consensus is costly.

I Pbft: A practical Byzantine fault-tolerant consensus protocol.

I Tamper-proof ledgers.

hashv puzzle1

T1, . . . , T100

hash1 puzzle2

T101, . . . , T200

hash2 puzzle3

T201, . . . , T300

hash3 puzzle4

T301, . . . , T400

v

Exact details: depend on consensus, application, a�ack model, . . .

I Many cryptographic tools.

What about high-performance?



22/60

Theory on consensus: Summary

Limitations of practical consensus

I No asynchronous communication!

I Dealing with f malicious failures requires n > 3f replicas.

I Worst-case: at least Ω (f + 1) phases of communication.

I Worst-case: at least Ω (nf) signatures and Ω
(
n + f2

)
messages.

I Network must stay connected when removing 2f replicas.

Consensus in practice

Asynchronous communication, n > 3f, clique network:

=⇒ termination only when communication is reliable.



23/60

Towards high-performance resilient data processing:

What do we already have?

Pbft



24/60

Pbft: Practical Byzantine Fault Tolerance

Primary Coordinates consensus: propose transactions to replicate.

Backup Accept transactions and verifies behavior of primary.

g 2 2 2 . . . 2
Client Primary Replica Replica Replica

Request T

Propose T

Result of T

Replication and verification



25/60

Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

〈T 〉c.



25/60

Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare

Prepare Commit Inform

PrePrepare(〈T 〉c, v, d).



25/60

Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare

Commit Inform

If receive PrePrepare message m: Prepare(m).



25/60

Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare Commit

Inform

If n − f identical Prepare(m) messages: Commit(m).



25/60

Pbft: Normal-case protocol in view v

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

If n − f identical Commit(m) messages: execute, Inform(〈T 〉c, d, r).



26/60

Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,

then the normal-case of Pbft ensures consensus on T in round d .

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

r3

r2

r1

p

c1

c2

PrePrepare Prepare Commit Inform



26/60

Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,

then the normal-case of Pbft ensures consensus on T in round d .

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

r3

r2

r1

p

c1

c2

What to do?

PrePrepare Prepare Commit Inform



26/60

Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,

then the normal-case of Pbft ensures consensus on T in round d .

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

r3

r2

r1

p

c1

c2

PrePrepare Prepare Commit Inform



27/60

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f. �



27/60

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f. �



27/60

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f. �



27/60

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f. �



27/60

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f . �



27/60

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f

i� n ≤ 3f . �



27/60

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci
, v, d),

then 〈T1〉c1
= 〈T2〉c2

.

Proof.

Replica ri commits to mi :

ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
≠ 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f i� n ≤ 3f . �



28/60

Pbft: Primary failure versus malicious replicas

Primary p is faulty

ignores r3

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

Replica r3 is malicious

pretends to be ignored

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform



28/60

Pbft: Primary failure versus malicious replicas

Primary p is faulty

ignores r3

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

Replica r3 is malicious

pretends to be ignored

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform



28/60

Pbft: Primary failure versus malicious replicas

Primary p is faulty

ignores r3

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

Replica r3 is malicious

pretends to be ignored

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform



28/60

Pbft: Primary failure versus malicious replicas

Primary p is faulty

ignores r3

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform

Replica r3 is malicious

pretends to be ignored

r3

r2

r1

p

c
T

PrePrepare Prepare Commit Inform



29/60

Pbft: Detectable primary failures

If the primary behaves faulty to > f non-faulty replicas,

then failure of the primary is detectable.

Replacing the primary: View-change at replica r

1. r detects failure of the current primary p.

2. r chooses a new primary p
′

(the next replica).

3. r provides p
′

with its current state.

4. p
′

proposes a new view .

5. If the new view is valid, then r switches to this view.



30/60

Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange

ViewChange NewView Validate and move to view v + 1

Send ViewChange(E, v) with E all prepared transactions.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.



30/60

Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange ViewChange

NewView Validate and move to view v + 1

Indirect failure detection by r2.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.



30/60

Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange ViewChange NewView

Validate and move to view v + 1

If n − f valid ViewChange(E, v) messages: NewView(v + 1, E,N).

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.



30/60

Pbft: A view-change in view v

b

r2

r1

p
′

ViewChange ViewChange NewView Validate and move to view v + 1

Move to view v + 1 if NewView(v + 1, E,N) is valid.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.



31/60

Pbft: A property of view-changes when n > 3f

Theorem (Castro et al.)

Let NewView(v ′, E,N) be a well-formed NewView message.

If a set S of n − 2f non-faulty replicas commi�ed to m in view v < v
′
,

then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v ′ − 1)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f), a contradiction! �



31/60

Pbft: A property of view-changes when n > 3f

Theorem (Castro et al.)

Let NewView(v ′, E,N) be a well-formed NewView message.

If a set S of n − 2f non-faulty replicas commi�ed to m in view v < v
′
,

then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v ′ − 1)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f), a contradiction! �



31/60

Pbft: A property of view-changes when n > 3f

Theorem (Castro et al.)

Let NewView(v ′, E,N) be a well-formed NewView message.

If a set S of n − 2f non-faulty replicas commi�ed to m in view v < v
′
,

then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v ′ − 1)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f), a contradiction! �



32/60

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of non-faulty primaries.

Worst-case: replacements until communication becomes reliable.



32/60

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of non-faulty primaries.

Worst-case: replacements until communication becomes reliable.



32/60

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of non-faulty primaries.

Worst-case: replacements until communication becomes reliable.



32/60

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of non-faulty primaries.

Worst-case: replacements until communication becomes reliable.



33/60

Pbft: Modeling real-world performance
1

0 20 40 60 80 100

0.0

1.0

2.0

3.0

·10
4

Number of Replicas

Throughput (txn/s, 15 ms delay)

Tmax

10
−4

10
−3

10
−2

10
−1

10
0

0.0

0.5

1.0

1.5

·10
4

Message Delay (s)

Throughput (txn/s, 7 replicas)

(Maximum throughput of any primary-backup broadcast protocol)

1
Bandwidth: 100 MiB/s, PrePrepare message size: 1024 B, Prepare and Commit message size: 256 B.



33/60

Pbft: Modeling real-world performance
1

0 20 40 60 80 100

0.0

1.0

2.0

3.0

·10
4

Number of Replicas

Throughput (txn/s, 15 ms delay)

Tmax
TPbft

10
−4

10
−3

10
−2

10
−1

10
0

0.0

0.5

1.0

1.5

·10
4

Message Delay (s)

Throughput (txn/s, 7 replicas)

(Maximum throughput of in-order Pbft)

1
Bandwidth: 100 MiB/s, PrePrepare message size: 1024 B, Prepare and Commit message size: 256 B.



33/60

Pbft: Modeling real-world performance
1

0 20 40 60 80 100

0.0

1.0

2.0

3.0

·10
4

Number of Replicas

Throughput (txn/s, 15 ms delay)

Tmax
TPbft

TPbft-256

10
−4

10
−3

10
−2

10
−1

10
0

0.0

0.5

1.0

1.5

·10
4

Message Delay (s)

Throughput (txn/s, 7 replicas)

(Maximum throughput of in-order Pbft with batching, 256 txn/batch)

1
Bandwidth: 100 MiB/s, PrePrepare message size: 1024 B, Prepare and Commit message size: 256 B.



33/60

Pbft: Modeling real-world performance
1

0 20 40 60 80 100

0.0

1.0

2.0

3.0

·10
4

Number of Replicas

Throughput (txn/s, 15 ms delay)

Tmax
TPbft

TPbft-256

Tooo-Pbft

10
−4

10
−3

10
−2

10
−1

10
0

0.0

0.5

1.0

1.5

·10
4

Message Delay (s)

Throughput (txn/s, 7 replicas)

(Maximum throughput of out-of-order Pbft)

1
Bandwidth: 100 MiB/s, PrePrepare message size: 1024 B, Prepare and Commit message size: 256 B.



33/60

Pbft: Modeling real-world performance
1

0 20 40 60 80 100

0.0

1.0

2.0

3.0

·10
4

Number of Replicas

Throughput (txn/s, 15 ms delay)

Tmax
TPbft

TPbft-256

Tooo-Pbft

Tooo-Pbft-256

10
−4

10
−3

10
−2

10
−1

10
0

0.0

0.5

1.0

1.5

·10
4

Message Delay (s)

Throughput (txn/s, 7 replicas)

(Maximum throughput of out-of-order Pbft with batching, 256 txn/batch)

1
Bandwidth: 100 MiB/s, PrePrepare message size: 1024 B, Prepare and Commit message size: 256 B.



34/60

Towards high-performance resilient data processing:

Where can we improve?



35/60

A look at high-performance data processing

Scalability: adding resources =⇒ adding performance.

Full replication: adding resources (replicas) =⇒ less performance!



36/60

Sharding and Geo-scale aware sharding

System

(All Data)

Requests

(All Data)

=⇒

Shard

(European Data)

Shard

(American Data)

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

Adding shards =⇒ adding throughput (parallel processing), adding storage.



37/60

Role Specialization: Read-only workloads

System

(All Data)

Requests

(Reads, Updates)

=⇒

Storage System

(All Data)

Requests

(Updates)

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Visualization

(u
pdate

s)

Specializing roles =⇒ adding throughput (parallel processing, specialized hardware, . . . ).



38/60

Towards high-performance resilient data processing:

What new tools do we need?



39/60

Central ideas for improvement

Reminder

We can make a resilient cluster that manages data: blockchains.

I Sharding: make each shard an independent blockchain.

Requires: reliable communication between blockchains.

Permissionless blockchains: relays, atomic swaps!

I Role Specialization: make the storage system a blockchain.

Requires: reliable read-only updates of the blockchain.

Permissionless blockchains: light clients!

Consensus is of no use here if we want e�iciency.



40/60

Towards high-performance resilient data processing:

What new tools do we need?

Sharding



41/60

Sharding: Reliable communication between blockchains

r1 r2

r3 r4

Cluster

(All Data)

Requests

(All Data)

=⇒

e1 e2

e3 e4

Cluster

(European Data)

a1 a2

a3 a4

Cluster

(American Data)

Cluster-Sending

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

The Byzantine cluster-sending problem.



42/60

The Byzantine cluster-sending problem

The problem of sending a value v from a cluster C1 to a cluster C2 such that

I all non-faulty replicas in C2 receive the value v ;

I all non-faulty replicas in C1 confirm that the value v was received; and

I C2 only receives a value v if all non-faulty replicas in C1 agree upon sending v .

Requirements to provide reliable communication between clusters with Byzantine replicas.



43/60

Global communication versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1) (f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)

OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977



43/60

Global communication versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1) (f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)

OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977



44/60

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.



44/60

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.



44/60

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.



44/60

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.



44/60

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.



44/60

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.



45/60

Lower bounds for cluster-sending: Results

Theorem (Cluster-sending lower bound, simplified)

We need to exchange max(n1,n2) messages to do cluster-sending.

Theorem (Cluster-sending lower bound, crash failures)

Assume n1 ≥ n2 and let

q = (f1 + 1) div nf2; r = (f1 + 1)modnf2.

We need to exchange at least qn2 + r + f2 sgn r ≈ n1 messages to do cluster-sending.



46/60

An optimal cluster-sending algorithm (crash failures)

Protocol for the sending cluster C1, n1 ≥ n2, n1 ≥ f :
1: Agree on sending v to C2.

2: Choose replicas P ⊆ C1 with |P | = f .

3: Choose a n2-partition partition(P) of P.

4: for P ∈ partition(P) do
5: Choose replicas Q ⊆ C2 with |Q | = |P |.
6: Choose a bijection b : P → Q.

7: for r1 ∈ P do
8: Send v from r1 to b(r1).

Protocol for the receiving cluster C2:
9: event r2 ∈ C2 receives w from a replica in C1 do

10: Broadcast w to all replicas in C2.

11: event r2 ∈ C2 receives w from a replica in C2 do
12: r2 considers w received.



47/60

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, f = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v



47/60

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, f = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v



47/60

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, f = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v



47/60

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, f = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v



47/60

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, f = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2 Received v



48/60

Cluster-sending: Can we do be�er

Pessimistic

No: these protocols are worst-case optimal.

Cannot do be�er than linear communication in the size of the clusters.

Optimistic—upcoming results

Yes: if we randomly choose sender and receiver, then we o�en do much be�er!

Probabilistic approach: expected-case only constant communication (four steps).



48/60

Cluster-sending: Can we do be�er

Pessimistic

No: these protocols are worst-case optimal.

Cannot do be�er than linear communication in the size of the clusters.

Optimistic—upcoming results

Yes: if we randomly choose sender and receiver, then we o�en do much be�er!

Probabilistic approach: expected-case only constant communication (four steps).



49/60

Towards high-performance resilient data processing:

What new tools do we need?

Role Specialization



50/60

Role Specialization: Reliable read-only updates of the blockchain

System

(All Data)

Requests

(Reads, Updates)

r1 r2

r3 r4

=⇒

Storage System

(All Data)

Requests

(Updates)

r1 r2

r3 r4

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Visualization

Byzantin
e Learn

in
g

(u
pdate

s)

The Byzantine learner problem.



51/60

The Byzantine learner problem

The problem of sending a ledger L maintained by a cluster C to a learner l such that:

I the learner l will eventually receive all transactions in L; and

I the learner l will only receive transactions in L.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in C.



52/60

Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ‖v ‖.
An information dispersal algorithm can encode v in n pieces v

′

such that v can be decoded from every set of n − f such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:

I Each piece v
′

has size

⌈
‖v ‖
n−f

⌉
.

I The n − f pieces necessary for decoding have a total size of (n − f)
⌈
‖v ‖
(n−f)

⌉
≈ ‖v ‖.



53/60

The delayed-replication algorithm

Idea: C sends a ledger L to learner l

1. Partition the ledger L in sequences S of n transactions.

2. Replica ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica ri ∈ C sends Si with a checksum Ci (S) of S to learner l.

4. Learner l receives at least n − f distinct and valid pieces and decodes S.

Observation (n > 2f)
I Replica ri sends at most B =

⌈
‖S ‖
n−f

⌉
+ c ≤ 2‖S ‖

n + 1 + c = O
(
‖S ‖
n + c

)
bytes.

I Learner l receives at most n · B = O (‖S‖ + cn) bytes.



54/60

Communication by the delayed-replication algorithm

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12

Update decision in ledger L −→

No dispersal First 4 updates Second 4 updates

Learned

L[0 : 4]
Learned

L[4 : 8]



55/60

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.



55/60

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Determine the path from root to S5.



55/60

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].



55/60

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

If one knows the root: validity of individual pieces can be determined.



56/60

Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner l, replica r ∈ C, and ledger L.

The delayed-replication algorithm with tree checksums guarantees

1. l will learn L;

2. l will receive at most |L| messages with a total size of O (‖L‖ + |L| log n);
3. l will only need at most |L|/n decode steps;

4. r will sent at most |L|/n messages to l of size O
(
‖L ‖+|L | log n

n

)
.

Adding replicas to cluster C =⇒ less communication per replica!



57/60

Application: Scalable storage for resilient systems

I Clusters typically need a view V on the data to decide whether updates are valid.

I Clusters only need the full ledger L for recovery .

I We can use delayed-replication to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

O (‖L‖ + ‖V‖) to O
(
‖L‖
n − f +

|L|
n

log(n) + ‖V‖
)
.



58/60

Towards high-performance resilient data processing:

Concluding remarks



59/60

Conclusion

We need an extensive toolbox!

(permissioned) (permissionless)

I Consensus PBFT, Paxos, . . . PoW, PoS, . . .

I Cross-blockchain communication Cluster-sending Relays, atomic swaps

I Read-only participation Byzantine learning Light clients

High-performance resilient data processing is nearby.



60/60

Ongoing work

Initial results are available

I Cluster-sending: DISC 2019, doi: 10.4230/LIPIcs.DISC.2019.45.

I Byzantine learning: ICDT 2020, doi: 10.4230/LIPIcs.ICDT.2020.17.

I Geo-aware consensus: VLDB 2020, doi: 10.14778/3380750.3380757.

More about us and our work

I Jelle Hellings https://jhellings.nl/.

I
Creativity Unfolded

ExpoLab https://expolab.org/.

I ResilientDB
Security, Privacy Reloaded

https://resilientdb.com/.

https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.ICDT.2020.17
https://doi.org/10.14778/3380750.3380757
https://jhellings.nl/
https://expolab.org/
https://resilientdb.com/


61/60

References I

I�ai Abraham et al. Synchronous Byzantine Agreement with Expected O (1) Rounds, Expected O
(
n

2
)

Communication, and Optimal Resilience. 2018.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. “CAPER: A Cross-application

Permissioned Blockchain”. In: Proceedings of the VLDB Endowment 12.11 (2019), pp. 1385–1398. issn:

2150-8097. doi: 10.14778/3342263.3342275.

Elli Androulaki et al. “Hyperledger Fabric: A Distributed Operating System for Permissioned

Blockchains”. In: Proceedings of the Thirteenth EuroSys Conference. ACM, 2018, 30:1–30:15. doi:

10.1145/3190508.3190538.

Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien �éma. “RBFT: Redundant Byzantine Fault

Tolerance”. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems. IEEE, 2013,

pp. 297–306. doi: 10.1109/ICDCS.2013.53.

Pierre-Louis Aublin et al. “The Next 700 BFT Protocols”. In: ACM Transactions on Computer Systems

32.4 (2015), 12:1–12:45. doi: 10.1145/2658994.

Eric Brewer. “CAP twelve years later: How the “rules” have changed”. In: Computer 45.2 (2012),

pp. 23–29. doi: 10.1109/MC.2012.37.

https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1145/2658994
https://doi.org/10.1109/MC.2012.37


62/60

References II

Eric A. Brewer. “Towards Robust Distributed Systems (Abstract)”. In: Proceedings of the Nineteenth

Annual ACM Symposium on Principles of Distributed Computing. ACM, 2000, pp. 7–7. doi:

10.1145/343477.343502.

Christian Cachin and Marko Vukolic. “Blockchain Consensus Protocols in the Wild (Keynote Talk)”.

In: 31st International Symposium on Distributed Computing. Vol. 91. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 1:1–1:16. doi: 10.4230/LIPIcs.DISC.2017.1.

Michael Casey et al. The Impact of Blockchain Technology on Finance: A Catalyst for Change. Tech. rep.

International Center for Monetary and Banking Studies, 2018. url:

https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf.

Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance and Proactive Recovery”. In:

ACM Transactions on Computer Systems 20.4 (2002), pp. 398–461. doi: 10.1145/571637.571640.

Miguel Correia et al. “Low complexity Byzantine-resilient consensus”. In: Distributed Computing 17.3

(2005), pp. 237–249. doi: 10.1007/s00446-004-0110-7.

Richard A. DeMillo, Nancy A. Lynch, and Michael J. Merri�. “Cryptographic Protocols”. In:

Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing. ACM, 1982,

pp. 383–400. doi: 10.1145/800070.802214.

https://doi.org/10.1145/343477.343502
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://doi.org/10.1145/571637.571640
https://doi.org/10.1007/s00446-004-0110-7
https://doi.org/10.1145/800070.802214


63/60

References III

Tien Tuan Anh Dinh et al. “Untangling Blockchain: A Data Processing View of Blockchain Systems”.

In: IEEE Transactions on Knowledge and Data Engineering 30.7 (2018), pp. 1366–1385. doi:

10.1109/TKDE.2017.2781227.

D. Dolev. “Unanimity in an unknown and unreliable environment”. In: 22nd Annual Symposium on

Foundations of Computer Science. IEEE, 1981, pp. 159–168. doi: 10.1109/SFCS.1981.53.

D. Dolev and H. Strong. “Authenticated Algorithms for Byzantine Agreement”. In: SIAM Journal on

Computing 12.4 (1983), pp. 656–666. doi: 10.1137/0212045.

Danny Dolev. “The Byzantine generals strike again”. In: Journal of Algorithms 3.1 (1982), pp. 14–30.

doi: 10.1016/0196-6774(82)90004-9.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. “On the Minimal Synchronism Needed for

Distributed Consensus”. In: Journal of the ACM 34.1 (1987), pp. 77–97. doi: 10.1145/7531.7533.

Danny Dolev and Rüdiger Reischuk. “Bounds on Information Exchange for Byzantine Agreement”. In:

Journal of the ACM 32.1 (1985), pp. 191–204. doi: 10.1145/2455.214112.

Partha Du�a, Rachid Guerraoui, and Marko Vukolic. The Complexity of Asynchronous Byzantine

Consensus. Tech. rep. EPFL, 2004. url: http://infoscience.epfl.ch/record/52690.

https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1137/0212045
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1145/7531.7533
https://doi.org/10.1145/2455.214112
http://infoscience.epfl.ch/record/52690


64/60

References IV

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the Presence of Partial

Synchrony”. In: Journal of the ACM 35.2 (1988), pp. 288–323. doi: 10.1145/42282.42283.

Paul Feldman and Silvio Micali. “Optimal Algorithms for Byzantine Agreement”. In: Proceedings of the

Twentieth Annual ACM Symposium on Theory of Computing. ACM, 1988, pp. 148–161. doi:

10.1145/62212.62225.

Michael J. Fischer and Nancy A. Lynch. “A lower bound for the time to assure interactive consistency”.

In: Information Processing Le�ers 14.4 (1982), pp. 183–186. doi: 10.1016/0020-0190(82)90033-3.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility of Distributed Consensus

with One Faulty Process”. In: Journal of the ACM 32.2 (1985), pp. 374–382. doi: 10.1145/3149.214121.

Juan A. Garay and Yoram Moses. “Fully Polynomial Byzantine Agreement for Processors in Rounds”.

In: SIAM Journal on Computing 27.1 (1998), pp. 247–290. doi: 10.1137/S0097539794265232.

Yossi Gilad et al. “Algorand: Scaling Byzantine Agreements for Cryptocurrencies”. In: Proceedings of

the 26th Symposium on Operating Systems Principles. ACM, 2017, pp. 51–68. doi:

10.1145/3132747.3132757.

https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/62212.62225
https://doi.org/10.1016/0020-0190(82)90033-3
https://doi.org/10.1145/3149.214121
https://doi.org/10.1137/S0097539794265232
https://doi.org/10.1145/3132747.3132757


65/60

References V

Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent, Available,

Partition-tolerant Web Services”. In: SIGACT News 33.2 (2002), pp. 51–59. doi:

10.1145/564585.564601.

William J. Gordon and Christian Catalini. “Blockchain Technology for Healthcare: Facilitating the

Transition to Patient-Driven Interoperability”. In: Computational and Structural Biotechnology Journal

16 (2018), pp. 224–230. doi: 10.1016/j.csbj.2018.06.003.

Jim Gray. “Notes on Data Base Operating Systems”. In: Operating Systems, An Advanced Course.

Springer-Verlag, 1978, pp. 393–481. doi: 10.1007/3-540-08755-9_9.

Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. “Brief Announcement: Revisiting Consensus

Protocols through Wait-Free Parallelization”. In: 33rd International Symposium on Distributed

Computing (DISC 2019). Vol. 146. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 44:1–44:3.

doi: 10.4230/LIPIcs.DISC.2019.44.

Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. Fault-Tolerant Distributed Transactions on

Blockchains. (to appear). 2020.

https://doi.org/10.1145/564585.564601
https://doi.org/10.1016/j.csbj.2018.06.003
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.4230/LIPIcs.DISC.2019.44


66/60

References VI

Suyash Gupta, Sajjad Rahnama, and Mohammad Sadoghi. “Permissioned Blockchain Through the

Looking Glass: Architectural and Implementation Lessons Learned”. In: Proceedings of the 40th

International Conference on Distributed Computing Systems. IEEE, 2020.

Suyash Gupta et al. “An In-Depth Look of BFT Consensus in Blockchain: Challenges and

Opportunities”. In: Proceedings of the 20th International Middleware Conference Tutorials. ACM, 2019,

pp. 6–10. doi: 10.1145/3366625.3369437.

Suyash Gupta et al. “ResilientDB: Global Scale Resilient Blockchain Fabric”. In: Proceedings of the

VLDB Endowment 13.6 (2020), pp. 868–883. doi: 10.14778/3380750.3380757.

Suyash Gupta et al. “Tutorial: Blockchain Consensus Unraveled: Virtues and Limitations”. In:

Proceedings of the 14th ACM International Conference on Distributed and Event-based Systems. ACM,

2020. doi: 10.1145/3401025.3404099.

Jelle Hellings and Mohammad Sadoghi. “Brief Announcement: The Fault-Tolerant Cluster-Sending

Problem”. In: 33rd International Symposium on Distributed Computing (DISC 2019). Vol. 146. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 45:1–45:3. doi: 10.4230/LIPIcs.DISC.2019.45.

https://doi.org/10.1145/3366625.3369437
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.1145/3401025.3404099
https://doi.org/10.4230/LIPIcs.DISC.2019.45


67/60

References VII

Jelle Hellings and Mohammad Sadoghi. “Coordination-Free Byzantine Replication with Minimal

Communication Costs”. In: 23rd International Conference on Database Theory (ICDT 2020). Vol. 155.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, 17:1–17:20. doi:

10.4230/LIPIcs.ICDT.2020.17.

Maurice Herlihy. “Blockchains from a Distributed Computing Perspective”. In: Communications of the

ACM 62.2 (2019), pp. 78–85. doi: 10.1145/3209623.

Ma� Higginson et al. The promise of blockchain. Tech. rep. McKinsey&Company, 2017. url:

https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-
of-blockchain.

Muhammad El-Hindi et al. “BlockchainDB – Towards a Shared Database on Blockchains”. In:

Proceedings of the 2019 International Conference on Management of Data. Amsterdam, Netherlands:

ACM, 2019, pp. 1905–1908. doi: 10.1145/3299869.3320237.

Muhammad El-Hindi et al. “BlockchainDB: A Shared Database on Blockchains”. In: Proceedings of the

VLDB Endowment 12.11 (2019), pp. 1597–1609. doi: 10.14778/3342263.3342636.

Dan Holtby, Bruce M. Kapron, and Valerie King. “Lower bound for scalable Byzantine Agreement”. In:

Distributed Computing 21.4 (2008), pp. 239–248. doi: 10.1007/s00446-008-0069-x.

https://doi.org/10.4230/LIPIcs.ICDT.2020.17
https://doi.org/10.1145/3209623
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://doi.org/10.1145/3299869.3320237
https://doi.org/10.14778/3342263.3342636
https://doi.org/10.1007/s00446-008-0069-x


68/60

References VIII

Maged N. Kamel Boulos, James T. Wilson, and Kevin A. Clauson. “Geospatial blockchain: promises,

challenges, and scenarios in health and healthcare”. In: International Journal of Health Geographics

17.1 (2018), pp. 1211–1220. doi: 10.1186/s12942-018-0144-x.

Rüdiger Kapitza et al. “CheapBFT: Resource-e�icient Byzantine Fault Tolerance”. In: Proceedings of

the 7th ACM European Conference on Computer Systems. ACM, 2012, pp. 295–308. doi:

10.1145/2168836.2168866.

Ramakrishna Kotla et al. “Zyzzyva: Speculative Byzantine Fault Tolerance”. In: ACM Transactions on

Computer Systems 27.4 (2009), 7:1–7:39. doi: 10.1145/1658357.1658358.

Leslie Lamport. “Paxos Made Simple”. In: ACM SIGACT News, Distributed Computing Column 5 32.4

(2001), pp. 51–58. doi: 10.1145/568425.568433.

Leslie Lamport. “The implementation of reliable distributed multiprocess systems”. In: Computer

Networks (1976) 2.2 (1978), pp. 95–114. doi: 10.1016/0376-5075(78)90045-4.

Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals Problem”. In: ACM

Transactions on Programming Languages and Systems 4.3 (1982), pp. 382–401. doi:

10.1145/357172.357176.

https://doi.org/10.1186/s12942-018-0144-x
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/568425.568433
https://doi.org/10.1016/0376-5075(78)90045-4
https://doi.org/10.1145/357172.357176


69/60

References IX

Laphou Lao et al. “A Survey of IoT Applications in Blockchain Systems: Architecture, Consensus, and

Tra�ic Modeling”. In: ACM Computing Surveys 53.1 (2020). doi: 10.1145/3372136.

Jean-Philippe Martin and Lorenzo Alvisi. “Fast Byzantine Consensus”. In: IEEE Transactions on

Dependable and Secure Computing 3.3 (2006), pp. 202–215. doi: 10.1109/TDSC.2006.35.

Shlomo Moran and Yaron Wolfstahl. “Extended impossibility results for asynchronous complete

networks”. In: Information Processing Le�ers 26.3 (1987), pp. 145–151. doi:

10.1016/0020-0190(87)90052-4.

Arvind Narayanan and Jeremy Clark. “Bitcoin’s Academic Pedigree”. In: Communications of the ACM

60.12 (2017), pp. 36–45. doi: 10.1145/3132259.

Senthil Nathan et al. “Blockchain Meets Database: Design and Implementation of a Blockchain

Relational Database”. In: Proceedings of the VLDB Endowment 12.11 (2019), pp. 1539–1552. doi:

10.14778/3342263.3342632.

Faisal Nawab and Mohammad Sadoghi. “Blockplane: A Global-Scale Byzantizing Middleware”. In:

35th International Conference on Data Engineering (ICDE). IEEE, 2019, pp. 124–135. doi:

10.1109/ICDE.2019.00020.

https://doi.org/10.1145/3372136
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1016/0020-0190(87)90052-4
https://doi.org/10.1145/3132259
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1109/ICDE.2019.00020


70/60

References X

Michael Okun. “On the round complexity of Byzantine agreement without initial set-up”. In:

Information and Computation 207.12 (2009), pp. 1351–1368. doi: 10.1016/j.ic.2009.07.002.

M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer, 2020. doi:

10.1007/978-3-030-26253-2.

M. Pease, R. Shostak, and L. Lamport. “Reaching Agreement in the Presence of Faults”. In: Journal of

the ACM 27.2 (1980), pp. 228–234. doi: 10.1145/322186.322188.

Michael Pisa and Ma� Juden. Blockchain and Economic Development: Hype vs. Reality . Tech. rep.

Center for Global Development, 2017. url: https://www.cgdev.org/publication/blockchain-
and-economic-development-hype-vs-reality.

Dale Skeen. A �orum-Based Commit Protocol. Tech. rep. Cornell University, 1982.

Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. 3th. Maarten van Steen, 2017.

url: https://www.distributed-systems.net/.

Gadi Taubenfeld and Shlomo Moran. “Possibility and impossibility results in a shared memory

environment”. In: Acta Informatica 33.1 (1996), pp. 1–20. doi: 10.1007/s002360050034.

https://doi.org/10.1016/j.ic.2009.07.002
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1145/322186.322188
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.distributed-systems.net/
https://doi.org/10.1007/s002360050034


71/60

References XI

Gerard Tel. Introduction to Distributed Algorithms. 2nd. Cambridge University Press, 2001.

Maofan Yin et al. “HotStu�: BFT Consensus with Linearity and Responsiveness”. In: Proceedings of the

2019 ACM Symposium on Principles of Distributed Computing. ACM, 2019, pp. 347–356. doi:

10.1145/3293611.3331591.

https://doi.org/10.1145/3293611.3331591

	Why?
	What is the relation with blockchains?
	What do we already have?
	What do we already have?   Pbft
	Where can we improve?
	What new tools do we need?
	What new tools do we need?    Sharding
	What new tools do we need?    Role Specialization
	Concluding remarks
	References

